Lecture notes and example exercise Lab class session 1, for assignment 2

Zeqi Zhao

Nov 8, 2023

1/51

Basics of Sets

Zeqi Zhao Nov 8, 2023 2/51

Set membership

Note the difference betwen \in and \subseteq .

 $x \in S$ means 'x is a member of set S'

 $\{a, b, c\}$ is the set whose only members are a, b, and c, and nothing else.

$${a, b, c} = {b, c, a} = {a, a, a, c, c, b, b}$$

A set can also be a member of another set.

$${a, b, c} \in {\{a, b, c\}, a, b\}}$$

 $a \in {a}$
 ${a} \in {\{a\}\}}$
but $a \neq {a} \neq {\{a\}\}}$

<ロト < 部 > < き > くき > くき > き の Q で

3/51

Subset relation

 $A \subseteq B$ means 'A is a subset of B'.

How to check: see if all members of A are also members of B

$$A = \{a, b, c\}$$
$$B = \{a, b\}$$
$$B \subseteq A$$

 \varnothing is a subet of every set, including itself.

4/51

Set Equivalence

When A and B have the same members, we say 'A and B are equal' and write A = B

$$A = \{a, b, c\}$$

$$B = \{a, b, c\}$$

$$A = B$$

Note that when A = B, A and B are each other's subset.

5/51

Is (1) true?

(1)
$$b \in \{2, 3, 4\}$$

No, the only members in $\{2, 3, 4\}$ are 2, 3, 4; b is not among them.

6/51

Is (2) true?

$$(2) \quad \{2,3\} \in \{2,3,4\}$$

No, the only members in $\{2, 3, 4\}$ are 2, 3, 4; the set $\{2, 3\}$ is not among them.

7/51

Is (3) true?

(3)
$$\emptyset = \{\emptyset\}$$

No, an empty set is not the same as a set that contains an empty set.

8/51

Is (4) true?

(4)
$${a, c} \in {a, b, 3, {a, c}}$$

Yes, $\{a, b, 3, \{a, c\}\}$ has the set $\{a, c\}$ as a member.

9/51

Is (5) true?

(5)
$${a, c} \subseteq {a, b, 3, {a, c}}$$

No, the members in $\{a, c\}$ are the members in $\{a, b, 3, \{a, c\}\}$ are

a, c;

10/51

a, b, 3, {a, c}.

Not all the members in $\{a, c\}$ are members of $\{a, b, 3, \{a, c\}\}$.

How to define sets

11/51

Two ways to define sets

- Name all the members put { } around the members. like {1, 2, 3}. But what if there are infinite members?
- Abstraction: We define sets by using **variables** like x, y.

If I want a set that contains all the white cats.

This set would contain an object such that this object is a white cat.

We write this as:

{x : x is a white cat}

Variables don't refer

The variable don't refer to a particular object, so the names don't matter:

```
\{x : x \text{ is a white cat}\} = \{y : y \text{ is a white cat}\} = \{z : z \text{ is a white cat}\}
```

All three sets are equal: they are the same set that contains all the white cats.

13/51

Variables must be bound

If a variable appears before the:, you go and find it after the:.

```
\{x : x \text{ is a white cat}\}
```

Since the part after the : is describing the condition for the variable x, so x must be in this part.

This is wrong because x is not bound.

```
{x: y is a white cat}
```


Variables vs. Non-Variables

This is a set of the objects who kissed Eve.

```
{x:x kissed Eve}
```

This is a set of the objects who kissed Mia.

```
{x: x kissed Mia}
```

What about this then?

```
{x : x kissed b}
```


15/51

Variables vs. Non-Variables

Since *b* is not bound, i.e. you don't find *b* before the :, *b* is not a variable.

```
\{x : x \text{ kissed } b\}
```

Just like *Eve* and *Mia*, *b* is a name of an object.

So this is a set of objects who kissed *b*.

16/51

How to read complex sets

When you see layers of { }, first go to the inner layer.

```
\{y: y \in \{x: x \text{ kissed Eve}\} \}
```

Set A is a set of objects who kissed Eve.

We replace the inner layer set with A.

$$\{y: y \in \{x: x \text{ kissed Eve}\} \} = \{y: y \in A\}$$

Now things look way more clear:

The outer layer set is still the set of objects who kissed Eve.

→□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ● りへで

17/51

Is (6) true?

(6)
$$\{x: x \in A\} = A$$
.

Yes, $\{x : x \in A\}$ is a set which contains all members of A, therefore equal to A.

18/51

Is (7) true?

(7) $\{x : a \text{ kissed } x\} = \{y : b \text{ kissed } y\}$

Only if either

- \bullet a = b. If they are, then both sets denote the set of objects kissed by a (or b for that matter).
- ullet or a \neq b, but a and b kissed exactly the same objects.

Is (8) true?

(8) {Eve: Eve saw Mia} = {Mia: Mia saw Eve}

Since we don't use Eve and Mia as variables, but only to refer to individuals, both sets are ill-defined. You cannot abstract over an individual.

20/51

Is (9) true?

(9)
$$\{x : \{y : x \text{ loves } y\} = \emptyset\} = \{y : \{x : y \text{ loves } x\} = \emptyset\}$$

Yes,

First the inner layer set on the left.

 $\{y: x \text{ loves } y\} = \emptyset$ means: the set of objects loved by x is the empty set.

Then the outer layer.

 $\{x : \{y : x \text{ loves } y\} = \emptyset\}$ is the set of objects x such that the set of objects loved by x is the empty set, i.e., **the set of objects who do not love anything**

Zeqi Zhao Nov 8, 2023 21/51

Is (9) true?

(9)
$$\{x : \{y : x \text{ loves } y\} = \emptyset\} = \{y : \{x : y \text{ loves } x\} = \emptyset\}$$

Then the inner layer set on the right.

 $\{x: y \text{ loves } x\} = \emptyset$ means: the set of objects loved by y is the empty set.

Then the outer layer.

 $\{y : \{x : y \text{ loves } x\} = \emptyset\}$ is the set of objects y such that the set of objects loved by y is the empty set, i.e., **the set of objects who do not love anything**

Zeqi Zhao Nov 8, 2023 22/51

Is (10) true? Under which condition?

(10)
$$\{x : \{y : x \text{ loves } y\} = \emptyset\} = \{x : \{y : y \text{ loves } x\} = \emptyset\}$$

First the inner layer set on the **left**.

 $\{y: x \text{ loves } y\} = \emptyset \text{ means: the set of objects loved by } x \text{ is the empty set.}$

Then the outer layer.

 $\{x : \{y : x \text{ loves } y\} = \emptyset\}$ is the set of objects x such that the set of objects loved by x is the empty set, i.e., **the set of objects who do not love anything**

Zeqi Zhao Nov 8, 2023 23/51

Is (10) true? Under which condition?

(10)
$$\{x : \{y : x \text{ loves } y\} = \emptyset\} = \{x : \{y : y \text{ loves } x\} = \emptyset\}$$

Then the inner layer set on the **right**.

 $\{y: y \text{ loves } x\} = \emptyset$ means: the set of objects who loves x is the empty set.

Then the outer layer.

 $\{x : \{y : y \text{ loves } x\} = \emptyset\}$ is the set of objects x such that the set of objects who loves x is the empty set, i.e., **the set of objects** who are not loved by anything

Zeqi Zhao Nov 8, 2023 24/51

Is (10) true? Under which condition?

(10)
$$\{x : \{y : x \text{ loves } y\} = \emptyset\} = \{x : \{y : y \text{ loves } x\} = \emptyset\}$$

(10) is true when the people who do not love anything are the same people who are not loved by anything.

25/51

Functions

26/51

Functions

Think about functions a special type of **relations**:

It is like a machine, for each input (**argument**) you feed it, it returns a **unique value** as its output.

This returned value is written as **F(A)**.

This is how you read it: 'F applied to A' or 'F of A'

27/51

Defining a function: Domain and Range

Since function is mapping from arguments to values, to define a function, you need to specify its domain and range:

Domain: The set of objects the function can take as inputs.

Range: The set of objects the function returns as outputs.

For example, if a function is f(x) = x + 2, when the domain is the set of all natural numbers, the range would the set of all natural numbers.

You feed it 2, it gives you the unique value 4.

Ways of defining functions

We may define functions with lists, tables, or words.

•
$$F = \{ \langle a, b \rangle, \langle c, b \rangle, \langle d, e \rangle \}$$

• $F = \begin{bmatrix} a \to b \\ c \to b \\ d \to e \end{bmatrix}$

• F is a function f with domain $\{a, c, d\}$ such that f(a)=f=(c)=b and f(d)=e

29/51

Name examples of ordered pairs that are in relation R:

(11)
$$R := \{\langle x, y \rangle : x \text{ is a country and } y \text{ is the national capital of } x\}$$

E.g.:

```
\langle \text{Germany, Berlin} \rangle \in R
\langle \text{India, New Delhi} \rangle \in R
\langle \text{Norway, Oslo} \rangle \in R
\langle \text{China, Beijing} \rangle \in R \dots
```


(12) Is R a function?

$$R := \{\langle a, b \rangle, \langle c, d \rangle\}$$

Yes. Every left component of an ordered pair in $\it R$ has exactly one right component.

(13) Is R a function?

$$R := \{\langle x, a \rangle, \langle x, b \rangle\}$$

Not generally, only if a = b.

If $a \neq b$, x has two distinct right components. In that case R is a mere relation.

(14) Is R a function?

$$R := \{\langle x, a \rangle, \langle y, a \rangle\}$$

Yes. Every left component in a pair in *R* corresponds to exactly one right component. I.e., a right component may correspond to more than one left component.

(ロ → 4 個 → 4 差 → 4 差 → 9 Q ()

(15) Is R a function?

 $R := \{\langle x, y \rangle : x \text{ is a person and } y \text{ is a sibling of } x\}$

No, it is possible for people to have no or more than one siblings, i.e., every left component does not have to correspond to exactly one right component.

(16) Is *R* a function?

 $R := \{\langle x, y \rangle : x \text{ is a person and } y \text{ is the biological mother of } x\}$

Yes, a person can only have one biological mother, i.e., every left component corresponds to exactly one right component.

Exercise: Defining domain and range

(17) Define the domain and range of F:

 $F := \{\langle x, y \rangle : x \text{ is an author and } y \text{ is } x'\text{s best-selling book}\}$

Domain of $F = \{x : x \text{ is an author who published books } \}$

Range of $F = \{x : x \text{ is a book and } x \text{ is the best-selling book of an author} \}$

<ロ > ∢ 🗗 > ∢ 🖹 > 〈 🖹 > り Q 🤆

Exercise: Defining domain and range

(18) Define the domain and range of F:

 $F := \{ \langle x, y \rangle : x \text{ is an object and } y \text{ is } x'\text{s year of birth} \}$

Domain of $F = \{x : x \text{ is an object such that there is a year in which they were born }$

Range of $F = \{x : x \text{ is a year and some object was born in } x\}$

◆□▶◆□▶◆■▶◆■▶ ■ 9Q®

Exercise: Defining functions

Define the function *F* in words:

 $F := \{\langle x, y \rangle : x \text{ is an object and } y \text{ is } x'\text{s year of birth}\}$

Domain of F is the set $A = \{x : x \text{ is an object such that there is a } \}$ year in which they were born }

Range of F is the set B = $\{x : x \text{ is a year and some object was born } \}$ in *x*}

Let F be the function f from A to B, and for every argument $x \in A$ is mapped by f to its year of birth.

Zegi Zhao

Exercise: Defining functions

(20) Define the function *F* in words:

 $F := \{\langle x, y \rangle : x \text{ is a person and } y \text{ is } x'\text{s favourite kid}\}$

Domain of F is the set $A = \{x : x \text{ is a person who has a favourite kid}\}$

Range of F is the set B = $\{x : x \text{ is a kid and some person's favourite kid is } x\}$

Let F be the function f from A to B, and for every argument $x \in A$ is mapped by f to its favourite kid.

Zeqi Zhao Nov 8, 2023 39/51

Proof of truth-conditions

40/51

top-down vs bottom-up

Top-down: Start with the **S-node** and de-compose all the way down to the terminal nodes Mary and smokes.

Bottom-up: Start with the terminal nodes Mary and smokes and compose all the way up to the S-node.

> Zeqi Zhao Nov 8, 2023 41/51

Three things we already know

• Sentences denotes a truth-value (0 or 1).

Assumption: [S] = 1 iff Mary smokes

• **Composinality** tells us [S] is determined by [NP] and [VP] and how they combine.

◆ロト ◆部ト ◆重ト ◆重 ◆ のへの

Three things we already know

• proper names denote individuals

Native speakers use a **proper name** to **refer** to a particular individual/entity.

Zeqi Zhao Nov 8, 2023 43/51

What's the VP denotation

[VP] should be a function that **take an individual as its input** and **output a truth-value**.

<ロ > < 部 > < 差 > くき > をき と き りへで

44/51

Intransitive verbs as functions

Elements of *D*: set of actual individuals/entities

Elements of $\{0,1\}$: set of truth-values

Intransitive verbs like *smoke* is the function that maps any individual in a situation to 1 iff that individual smokes in that situation.

[smokes] =
$$f: D \rightarrow \{0, 1\}$$

For all $x \in D, f(x) = 1$ iff x smokes

Functional application and Non-Branching Nodes

When you combine two **branching nodes**, one of them, like **[VP]**, needs to be a function that takes the other one, like **[NP]**, as its argument.

Non-branching nodes inherit the denotations of their daughters.

46/51

Using rules S1 to S5 prove top-down that [S] = 1 iff Eve laughed.

Assumption: [S] = 1 iff Eve laughed

<ロ > ∢ 🗗 > ∢ 🖹 > 〈 🖹 > り Q 🧿

47/51

Here are the 5 rules. You don't need to memorize them.

So then
$$[\![\alpha]\!] = [\![\gamma]\!] ([\![\beta]\!])$$
.

So then $[\![\alpha]\!] = [\![\gamma]\!] ([\![\beta]\!])$.

So then $[\![\alpha]\!] = [\![\beta]\!]$.

S1 is functional application for branching nodes, S2-S5 are for non-branching nodes.

- 4 ロ ト 4 周 ト 4 ほ ト 4 ほ ト 9 Q Q

48/51

Let's start from [S] and try to de-compose it into [NP] and [VP]

Assumption: [S] = 1 iff Eve laughed

$$[S] = [VP]([NP])$$
 (S1)

(□▶◀圖▶◀불▶◀불▶ 불 쒸٩Թ

49/51

Then go down the non-branching nodes.

Assumption: [S] = 1 iff Eve laughed

50/51

$$[S] = [VP]([NP])$$
 (S1)

$$[\![\mathbf{NP}]\!] = [\![\mathbf{N}]\!] \tag{S2}$$
$$= [\![\mathbf{Eve}]\!] \tag{S4}$$

$$[VP] = [V]$$
 (S3)
= [laughed] (S5)

- [laugheu]

[S] = 1 iff Eve laughed.

End of proof

Zeqi Zhao Nov 8, 2023 51/51