Semantics lab class (Course 2)

Lecture 4, assignment 4

Zeqi Zhao
Session 3
November 22, 2023



Our agenda today

* Recap of last session.

* Assignment 3

* Also something new:

Negation, Coordination, semantic types, type-driven interpretation, A-notation
and conversion

* Some exercise to help you with assignment 4



Recap

Our semantic theory interpret any syntactic structure with two branches in terms of

Function Application. If & has the form S |, then [a] = [71([B])

T
g 7

Since intransitive verbs can be interpreted as both a function and a set, there must be

some kind of relationship between sets and functions.

We use characteristic function to express the membership of the elements of any set S.
This means, there is a one-on-one correspondence between sets and their

characteristic functions.



Recap

The meaning of intransitive verbs: Sets or characteristic functions.

This is because intransitive verbs expresses a property which may be true of some

individuals but not of others in a given situation.

For transitive verbs, their denotation is not a set of individuals, but a set of ordered

pairs. In other words, transitive verbs can been seen as binary function that takes two
arguments.



Recap

However, our syntax and compositionality tell us, transitive verbs denote a unary function takes exactly

one individual as argument. Therefore, we need Schonfinkelization to turn n-ary functions into

unary functions.

S > Denotation of §; truth-value — 1 (true) / 0 (false)
".H:__..-"" \‘.."‘\._“
NP VP Output
| e * VP denotes function from individuals to truth-values,
N’ Vv NP
| | |

I ; Bill} = Eill
Bill - 18] =B
Input

[Mary] = Mary The function
to be defined



Recap

Schonfinkelization/currying: Turning n-ary functions into unary

fundl?\,r_]a?{, Left-to-right unary Right-to-left ~ unary

[ < Fiona, Fiona >— 0 | i [ Fiona — 0 | | [ Fiona — 0 ]|
< Fiona, Patsy >— 1 Fiona — || Patsy — 1 Fiona —+ | Patsy — O
< Fiona, Jenny >— 0 Jenny — O enny — O
< Patsy, Fiona >— 0 | Fiona — 0 ] " Fiona — 1 ]
< Patsy, Patsy >— 0 Patsy — ||Patsy — O Patsy — atsy — 0
< Patsy, Jenny >— 1 Jenny — 1 | enny — 0 |
< Jenny, Fiona >— 0 Fiona — O Fiona — O
< Jenny, Patsy >— 0O Jenny — || Patsy — O Jenny + | |Patsy — 1
< Jenny, Jenny >— 1 _ l Jenny — 1 | | { Jenny — 1 J _

L ]

The “likers” The ones being liked The ones being liked The “likers”



Assignment 3: Exercise

1

(1) a. Don introduces himself to Betty.

b. S

/\

NP, VP
N v
agent DLH m}_’z

intmliuces l\|11

Don_
theme

agent  theme recipient

[introduce] = f: D — {g : D — {h:D — {0, 1}}}
Forall z,y,z € D, f(x)(y)(2) = 1 iff z introduces = to y

S8: If a has the form  V* | then [a] = [B]([v]).

TN
B v

S8: If v has the form V?

NP;

|
N3

|
Betty recipient

T

B

~

. then [a] = [B]([~]).



Assighment 3: Exercise 1

(1) a. Don introduces himself to Betty.

b. S

/\ [V] = [introduce] (S5)
1 VP [NP{] = [N;] = [Don] (S4, S2)
| INP3] = IN] = [Don] (54.52)
N [NP5] = [N3] = [Betty] (S4, S2)

' v’ NP;

| P |
V NP> NJ

| | |
introduces N, | |Betty
| Bottom up

Don




Assighment 3: Exercise 1

(1) a. Don introduces himself to Betty.

b. S
NP, VP
|
1\|l| \& NP;

/’\ |

Don v NP, N;
| | |

introduces N, | Betty

Don

[V] = [introduce] (S3)
[NP,] = [N;] = [Don] (84, 82)
[NP;] = [N2] = [Don] (S4,82)
[NP;] = [Ns] = [Betty] (54,82)
[V’] = [VI(INP:]) (S8)

= [introduce] ([Don] ) ([V], [NP2])
[VP] = [V’[(INPs]) (ST)

= [introduce] ([Don] )([Betty])

([V’]. [NP5])




Assighment 3: Exercise 1

(1) a. Don introduces himself to Betty.

b. S

[V] = [introduce] (S5)
i [NP,] = [N;] = [Don] (S4, S2)
NP, VP [NP,] = [N5] = [Don] (S4, S2)
N [NPs] = [Ns] = [Betty] (S4, 82)

| Vv NP-

D| |

Yo Nep V'] = [VI(INP]) (58)
i etty = [introduce[ ([Don]) (IV]. [NP2])
introduces N2 B tt.: [IVPJ] — HV‘]]([[NP,_{]]) (;T)

Deon

= [introduce] ([Don] ) ([Betty] )

([V’]. [NPs])

[VP](INP1])

[S]

f:D—){g:D—){h:D—}{O,I}}}
Forall z,y,z € D, f(z)(y)(z) = 1 iff z introduces x to y

[ g:D—>{h:D—>{U,1}}
Forall y,z € D, f(y)(z) = 1 iff z introduces Don to y

_ [ h:D—{0,1} ] (Don)

| Forall z € D, f(z) = 1iff z introduces Don to Betty
= 1 iff Don introduces Don to Betty

[introduce] ([Don] )([Betty] )([Don]) ([VP], [NP;])

(Don)(Betty)(Don)

] (Betty)(Don)




Assignment 3: Exercise 2

Exercise 2 Assume D = {Don, Betty}. The ternary relation R;,;,oquce is defined as in (2). The
first ordered triple in (2) says that Don introduces himself to Betty, the second one that Don
introduces Betty to herself, the third one that Betty introduces herself to Don.

(2) Rintroduce = { (Don, Don, Betty), (Don, Betty, Betty), (Betty, Betty, Don) }
agent theme recipient

The characteristic function of R;,¢roduce 18:

on, on, 0[1)
Don, Don, Betty
(Don, Betty| Don)
fintroduce = (Don, Betty| Betty

(Betty| Don{ Don)
Betty| Don/)[Betty|)
Betty| Betty, Donl)
Betty| Betty, Bettly)

A A
o= o0 O = o = O

agent theme recipient



Assignment 3: Exercise 2

(1) Is [[S] true in the situation defined by Rintroduce? () & Donintroduces himself to Betty.
b. b
NP, VP

The characteristic function of R, troduce 1S: N, V’/\NP;

] - | )

Don, Don, Don) Dom v NP, N

| |
DOH, DOH, Betty> agent introduces N, Betty

{
{
Don, Betty, Don
y
£ | (Don, Betty, Betty)
introduce - <Bet‘[y, Don, DOII>
{
(
|

pen ECIPIENT

theme

Betty, Don, Betty)
Betty, Betty, Don)
Betty, Betty, Betty)
agent theme recipient

N A AR




Assignment 3: Exercise 2

. . . . 1 . Don introd hi If to Betty.
(iii) Which schonfinkelization (D 2. Donintroduces himsel to Betty
NP, VP
| /\
- = r D 9 = - /\ |
bon = T Don \% NP, Ns
Don — . Betty — 0 | 5 |
Betty — Don — 1 32eNt introduces N, Betty
Betty — 0 | o
. - i F 13 recipient
[introduce] X B bor 0 oL
. Betty — 1 theme
Betty — L -
Betty  —s Don — 1
i I 4 | Betty — 0| | _

Left to right schdnfinkelization:
agent theme recipient

Right to left schonfinkelization: DO
recipient theme agent

theme recipient agent



Any questions about assignment 37



What kind of denotation type? Let's make a list

Sentences: the set of truth-values {0,1}

Proper names Chomsky: individuals.
e-type/referential NPs The cat: Individuals.

Common nouns cat: Functions from D to {0, 1}.
Intransitive verbs smokes: Functions from D to {0, 1}.
Predicative AD)J green: Functions from D to {0, 1}.

Transitive verbs loves: Functions from D to functions from D to {0, 1}.




What about negation?

The logical negation operator: = ‘not’

If [[John smokes]]=1, then [[It is not the case that John smokes]]=0.

If [[John smokes]]=0, then [[It is not the case that John smokes]]=1.

It seems that any proposition p must have the opposite truth value from its

negation =p (read 'not p’).



Neg as function

Function application: Using function as a tool to interpret any syntactic structure with two

branches. Output:
Known
(1) It is not the case that John smokes. S/ 1/0
Input
not S Known:

Function NO

To be defined John smokes

'[1—}0] — £:{0,1} — {0,1}

0—1 h L B
[[not]]= For all x € {0,1}, f(x) =1 iff x =0

What kind of denotation tvbe does [[notl] have?



Expanding our list...

Sentences: the set of truth-values {0,1}

Proper names Chomsky: individuals.
e-type/referential NPs The cat: Individuals.

Common nouns cat: Functions from D to {0, 1}.
Intransitive verbs smokes: Functions from D to {0, 1}.
Predicative ADJ green: Functions from D to {0, 1}.

Transitive verbs loves: Functions from D to functions from D to {0, 1}.




What about connectives?

There are lots of connectives:
and, or, but, because.......

Our concern: The logical operators which are truth-functional, like and, or, not.

(2) a.1'm a student | love semantics.
b. I'm a student | love semantics.
c. I'm a student or | love semantics.
d. that I'm a student | love semantics.

(2a) and (2b) have the same truth-conditional meaning, but not (2c) and (2d).



Connectives and/or

The logical connectives: and, or

p=1'm astudent g=1love semantics

and pAq read ‘pandq’ (Inclusive) or pVq read ‘porq'
P g pAg p g pvaq
T T 7T T T T
T F F T F T
F T F F 1T 7
F F F F F__F




Two kinds of ‘or’: Exclusive/inclusive (extra)

In spoken English we often use or to mean ‘either ... or ... but not both’.

p= Would you like tee? = Would you like coffe?

Exclusiveor p XOR(

P g PpXORg
T T F
T F T
F T T
F_F r

For this course, we only use “or” in a inclusive sense.




What kind of denotation type?

5" S Denotation of S: truth-value — 1 (true) / 0 (false)

Denotation of S§: truth-value — 1 (true) / 0 (false) /

NP’ VP’ or s |
| S | .
N V' NP’ NP VP Denotation of S: truth-value — 1 (true) / 0 (false)
| | | | |
Don loves N N vV
| | |
Megan Roger smokes




Filling in the blanks: The CoordinationP

Denotation of S§: truth-value — 1 (true) / 0 (false)

Denotation of S: truth-value — 1 (true) / 0 (false)

CoorPl - A function from {0, 1} to {0, 1}

S

e

|
Roger

T
VP
|
Vv
|

smokes

R

Denotation of S: truth-value — 1 (true) / 0 (false)



Filling in the blanks: The Connective or

Denotation of S§: truth-value — 1 (true) / 0 (false)

Denotation of S: truth-value — 1 (true) / 0 (false)

S

e
T
V' NP’ NP VP
| | | |
loves N’ N Vv
| | |
Megan Roger smokes

A function from {0, 1} to functions

from {0, 1} to {0, 1}

g CoorPL— A function from {0, 1} to {0, 1}
fL’ . -

R

Denotation of S: truth-value — 1 (true) / 0 (false)



Expanding our list...

Sentences: the set of truth-values {0,1}

Proper names Chomsky: individuals.

e-type/referential NPs the cat: Individuals.

Common nouns cat: Functions from D to {0, 1}.

Intransitive verbs smokes: Functions from D to {0, 1}.

Predicative ADJ green: Functions from D to {0, 1}.

Transitive verbs loves: Functions from D to functions from D to {0, 1}.

Negation operators not '-=': Function from {0, 1} to {0, 1}.

Connectives or/and:_Functions from {0, 1} to functions from {0, 1} to {0, 1}

CoorP: Function from {0, 1} to {0, 1}.



Categorizing denotation types

Our list is getting longer and more complex. Is there a way to express the
denotation types more straightforwardly?

Syntactic Category Denotation types

S Truth values {0, 1}

Proper name, Individual
e-type/referential NP

Common noun, V.

intransitivee _FUNCctions from D to {0, 1}

Predicative ADJ (characteristic function)
Vi ansitive Functions from D to functions from D to {0, 1}.
Neg, CoorP Function from {0, 1} to {0, 1}

or/and Functions from {0, 1} to functions from {0, 1} to {0, 1}



Semantic types and denotation domains

A more straightforward way: Define two basic types. With the help of function, we
can recursively define complex types.

e (‘entity’) stands for individual Basic
t stands for truth-value types

(@, T) stands for “function from type o to type T Functional

types

We can also use this type notation for the types of domains:
a. D; =1{1,0}
b. D. = {r:xisan entity}
c. Dvgm=1{f|f:Da— Dgs}(functions from things of type o to things of type j)



Inventory of semantic types

Syntactic Category Denotation types Semantic type

S

Proper name,
e-type/referential NP

Common noun,

Vintransitive' Predicative
ADJ

V

transitive

Neg, CoorP

or/and

Truth values {0, 1}

Individual

Functions from D, to D, {0, 1}
(characteristic function)

Functions from D, to functions from D, to {0, 1}.
Function from {0, 1} to {0, 1}
Functions from {0, 1} to functions from {0, 1} to {0, 1}

t

e

Basic
types

<e,t>

<e, <e,t>>

<t,t>

<t,<t,t>>

Function
al types




Exercise 8: Semantic types

(3) Specify the semantic types.

a. [[John Lennon]]

b. [[the girl who stole my bike]]
c. [[a student in Gottingen]]
d. [[| love semantics]]

e. [[and]]

f. [[and]] ([[I love semantics]])

f. [[not]]

g- [[happy]]

h. [[dances]]

i. [[love]]

j- [[love]] ([[John]])

k. [[love]] ([[John]]) ([[Mary]])

l. [[not]] ([[I love semantics]])



Tips for specifying semantic types

Tip 1: By definition, all characteristic functions are type <e,t>.

a. Common noun: cat, a student, a member of the Beatles, a smart linguist

b. Vi iransitive: STIOKES, dances, runs, lives in New York

c. Predicative ADIJ: happy, green

S :
NP VP <¢ t>
| N
T v NP”
|

I
Tony  ills N
I

Christopher



Tips for specifying semantic types

Tip 2: No need to memorize our list. If you don't remember a certain type, just
mark the nodes you do know and then calculate the unknown.

The only thing you need to kow:

St
Output:
NP Vp<€t>
|
"l*l v NP”
| |
Tony  ills N

? |
Christopher

— ¢ for individuals, in 1),
— ¢ for truth values, in {1, 0}

[[kill]] denotes a function from D

to “<e,t>

Therefore, the semantic type of [[kill]] is
<e,<et>>



One more example

Situation: On the day of the exam, you realized that — e for individuals, in D,
these are the only semantic types you can remember: — t for truth values, in {1. 0}

5.‘!

:
/\5” |

S CoorP

not
M ;///\
e NP VP or 5 t
I |
M V'
| | NP VP
Junior  drinks e | T T~
'“|~' v NP"
| |
Tony il N"

| e
Christopher



No need to panic. Just fill in the blanks

5|'|'r
t
/\ Type-driven interpretation:
<t,t> . S t The types of the daughter nodes
ne determine the type of their
/\ mother.
t § CoorP <t,t>
_NSet>
W o %
e | | <t,<t,t>
“n' U.‘
[ | NP VP <e,t>
Junior  drinks e | Py
"l*l Vv NP"
| I
Tony  kills N" .
<e,<e,t>> |

Christopher



Solutions: Excersise 8

(3) a. [[John Lennon]]
b. [[the girl who stole my bike]]
c. [[a student in Gottingen]]
d. [[I love semantics]]
e. [[and]]

f. [[and]] ([[I love semantics]])

f. [[not]]

g. [[happy]]

h. [[dances]]

i. [[love]]

j- [[love]] ([[John]])

k. [[love]] ([[John]]) ([[Mary]])

l. [[not]] ([[I love semantics]])



How we used to define functions

[loves] = f : D — {g: g is a function from D to {0, 1}}
For all x,y € D, f(x)(y) = 1 iff y loves x

Too much writing! And this is only one simple function.

To much when writing derivations.



How we used to define functions

With our new type notation, we can simplify the mapping of function as in (4):

(4) [loves] =f : D. — De s
For all x, y € D., f(x)(y) = 1iff y loves x

Still too much writing!



Lambda notation

A-notation is very convenient for defining functions.

Aac ¢
General format: Ao 7]
a = argument variable (x for arbitrary objects in the following)

¢ = domain condition (introduces condition on x)

v = value description (specifies the value of the function for x)

Algebraic notation: f(x)=x+1
Set theoretic notation: F :={<x, x+1>:x € N}
A-notation: F :=Ax:x e N. x+1 or  F:=Axe Dy. x+1

We name the function as: 'The function which maps every x such that x is

a hatural number to x+1.'



What about natural language?

F:=Axe D,.x+1
Read as: 'The function which maps every x such that to x+1."

Reading convention:

‘the function which maps every variable such that to value.
Problem with semantic function:
[[smoke]] =Ax € D, . x smokes

This is a function of type <e,t>.

Wrong reading: ‘The function which maps every x such that x € D to x smokes.’



Our semantic theory is truth-value based

Syntactic Category Denotation types Semantic type

S Truth values {0, 1} t

Proper name, Individual e
e-type/referential NP

Common noun, V,, Functions from D to {0, 1} <e,t>
Predicative ADJ (characteristic function)

V, Functions from D to functions from D to {0, 1}. <e, <e,t>>
Neg, CoorP Function from {0, 1} to {0, 1} <t,t>

or/and Functions from {0, 1} to functions from {0, 1} to {0, 1} <t,<t,t>>



Two reading conventions for lambda-terms

[Aac: @ . 7]
a = argument variable (x for arbitrary objects in the following)

¢ = domain condition (introduces condition on x)

¥ = value description (specifies the value of the function for x)

For functions with D, {0,1} as their range: Reading 1
‘the function which maps every variable such that domain to 1 if
and to O otherwise.’

For other functions: Reading 2
‘the function which maps every variable such that domain to value.’



Examples: How do we name functions?

* F=:AxED,.X+4 Domain: N Range: N

Read: 'The function which maps every x such that x is a natural number to x +4.

« F=:Ax€ D, .the age of x  Range: {x: xis the age of an individual}

Read: ‘The function which maps every x such that x is a individual to the age of x.'



Examples: How do we name functions?

« F,=:Ax:x € D, . x smokes Range: {0,1}

Read: 'The (smallest) function which maps every x such that x is a individual to 1 iff
x smokes, and to O otherwise.’

« ,=:\x € D, .[A\y € D, .y kisses x] <e,<e, t>> Range: {g:gisa
function from D to {0, 1}}

Read: 'The function which maps every x such that x is an individual to the function
which maps every y such that y is an individual to 1 iff y kisses x, and to O
otherwise.'



Exercise 9: Name the functions

(5) a. AXE D, . the mother of x
b. AxE€ D, . X
c. A€ D, . Chomsky
d.AXx € D,.[Ay € D,.ysaw x]
e MXED,.[A\yED, .y ¢&X]

f.AxED,.[\y€D,.[Az€D,.zintroducedy to x]



A tip for reading the functions

 \

(5) a.

b.

C.

AXE D, |
AXE D, |

.phnn;kv'\

Ay € D.|

ME D,

I~ € D).

NS D,

X

the mother of x

[?"~"I"r = DE‘ 1

JAX € D|.

vV saw x|

yEX]

Ay € D,

.[Az € D,.

z introduced y to x|

>




Solutions: Exercise 9

(5) a. AXE D, . the mother of x

The function which maps every x such that x is an individual to x’s mother.’

b. \Xx& D, . x

The function which maps every x such that x is an individual to x itself.’

c. AXX&€ D, . Chomsky

The function which maps every x such that x is an individual to Chomsky.’



Solutions: Exercise 9

(5) d.Ax € D,.[Ay € D, .y saw x]

'The function which maps every x such that x is an individual to the function which maps everyy
such that y is an individual to 1 if y saw x, and to O otherwise.'

eeMED,. [A\yED, .y ¢&Xx]

‘The function which maps every X such that X is a subset of the domain of individuals to the function
that maps every individual y to 1 iff y is not a member of X’

f.AxeD,.[Ay€D,.[Az€E€ D, . zintroducedy to x]

The function which maps every x such that x is an individual to the function which maps every y
such that y is an individual to the function which maps every z such that z is an individual to 1 if z
introduced y to x, and to 0 otherwise.



Lambda conversion

Conversion: Computing with lambda terms
A-notation: F := Ax: x € N. x?

When x=2,
then [Ax: x € N. x?] (2)
2

=4

Step 1: Delete the A, the variable, and the period.
Step 2: Replace all variables after the period by the argument.
Step 3: If possible, simplify the resulting expression.



Lambda conversion for natural language

Step 1: Delete the A, the variable, and the period.
Step 2: Replace all variables after the period by the argument.

Step 3: If possible, simplify the resulting expression.

When x= Mary, then
[AX& D, . the mother of x] ( )
= the mother of Mary

[Ax i x € D.. x smokes] ( )
=1 iff Mary smokes



More than one arguments?

Apply the one argument which is to the most left first to the variable to the most left.

T N

A e D_.[Ay € D,.[Az € D, .zintroduced!x to y]]] (Ann)(Sue) (Mary)

el N\

=[A\y € D..[Az € D, . z introduced Ann to y]] (Sue) (Mary)

v N

=[Az € D, .z introduced Ann to Sue] (Mary)

= 1iff Mary introduced Ann to Sue



Exercise 10: Simplify this function.

A €D, .[Ay € D,.[A\z € D, .z introduced y to %] (Ann)]] (Sue)

Tip: Argument and function are close “friends”.
[Ax] (argument to replace x)

Simplify this function.



Solution

<N\

AXx € D,.[Ay e D,.[Az € D,.zintroduced y to x] (Ann)]] (Sue)

e N\

=[Ax € D..[Ay € D, . Ann introduced y to x]] (Sue)

=Ay € D, . Ann introduced y to Sue



Exercise 10: Function-valued functions

([Av € D . y is blond])

Simplify this function.

A char-function



Solution

[AM € Dieyy - [Ax € De . f(x) =1]]([A\y € De . y is blond])

[Ax € De . [A\y € D, . y is blond](x) = 1]



Next time...

Empty expressions, non-verbal predicates, modification



Thanks and see you next week!



